
ABB Robotics

Application manual
Motion functions and events

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Application manual

Motion functions and events
RobotWare 5.14

Document ID: 3HAC 18152-1

Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

The information in this manual is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to persons
or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written
permission, and contents thereof must not be imparted to a third party nor be used for
any unauthorized purpose. Contravention will be prosecuted.

Additional copies of this manual may be obtained from ABB at its then current charge.

 © Copyright 2004, 2006, 2009-2011 ABB All rights reserved.

ABB AB
Robotics Products

SE-721 68 Västerås
Sweden

Table of Contents

33HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Overview of this manual. 5
Product documentation, M2004 . 7
Safety . 9

1 World Zones (608-1) 11

1.1 Overview . 11
1.2 RAPID components . 12
1.3 Code examples . 14

2 Fixed Position Events 17

2.1 Overview . 17
2.2 RAPID components and system parameters . 18
2.3 Code examples . 21

3 Independent Axes (610-1) 23

3.1 Overview . 23
3.2 System parameters . 25
3.3 RAPID components . 26
3.4 Code examples . 27

4 Path Recovery (611-1) 29

4.1 Overview . 29
4.2 RAPID components . 30
4.3 Store current path . 31
4.4 Path recorder. 38

5 Path Offset (612-1) 47

5.1 Overview . 47
5.2 RAPID components . 48
5.3 Related RAPID functionality . 49
5.4 Code example . 50

Index 51

Table of Contents

4 3HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

 Overview of this manual

53HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Overview of this manual

About this manual

This manual explains the basics of when and how to use the following RobotWare base

functionality and options:

• World Zones (608-1)

• Fixed Position Events

• Independent Axes (610-1)

• Path Recovery (611-1)

• Path Offset (612-1)

Usage

This manual can be used either as a reference to find out if a base functionality or option is

the right choice for solving a problem, or as a description of how to use a base functionality

or option. Detailed information regarding syntax for RAPID routines, and similar, is not

described here, but can be found in the respective reference manual.

Who should read this manual?

This manual is mainly intended for robot programmers.

Prerequisites

The reader should...

• be familiar with industrial robots and their terminology

• be familiar with the RAPID programming language

• be familiar with system parameters and how to configure them.

Organization of chapters

The manual is organized in the following chapters:

References

Chapter Contents

1. Describes the option World Zones.

2. Describes the base functionality Fixed Position Events.

3. Describes the option Independent Axes.

4. Describes the option Path Recovery.

5. Describes the option Path Offset.

Reference Document Id

Technical reference manual - RAPID overview 3HAC16580-1

Technical reference manual - RAPID Instructions, Functions and Data
types

3HAC16581-1

Operating manual - IRC5 with FlexPendant 3HAC16590-1

Technical reference manual - System parameters 3HAC17076-1

Application manual - MultiMove 3HAC021272-001

Continues on next page

 Overview of this manual

3HAC 18152-1 Revision: F6

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Revisions

Revision Description

- First edition

A Minor corrections.

Option changed name from Independent Movements to Independent Axes.

Path recorder added to Path Recovery.

B New instructions used for MultiMove systems.

C Path Recovery: Corrected errors in code examples.

D Fixed Position Events is now part of the RobotWare base functionality.

E Path Recovery: StorePath and RestoPath is now included in RobotWare
base.

F Added instructions TriggRampAO and TriggLIOs and datatypes triggios,
triggiosdnum, and triggstrgo to Fixed Position Events.

Continued

 Product documentation, M2004

73HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Product documentation, M2004

Categories for manipulator documentation

The manipulator documentation is divided into a number of categories. This listing is based

on the type of information in the documents, regardless of whether the products are standard

or optional.

All documents listed can be ordered from ABB on a DVD. The documents listed are valid for

M2004 manipulator systems.

Product manuals

Manipulators, controllers, DressPack/SpotPack, and most other hardware will be delivered

with a Product manual that generally contains:

• Safety information.

• Installation and commissioning (descriptions of mechanical installation or electrical

connections).

• Maintenance (descriptions of all required preventive maintenance procedures

including intervals and expected life time of parts).

• Repair (descriptions of all recommended repair procedures including spare parts).

• Calibration.

• Decommissioning.

• Reference information (safety standards, unit conversions, screw joints, lists of tools).

• Spare parts list with exploded views (or references to separate spare parts lists).

• Circuit diagrams (or references to circuit diagrams).

Technical reference manuals

The technical reference manuals describe the manipulator software in general and contain

relevant reference information.

• RAPID Overview: An overview of the RAPID programming language.

• RAPID Instructions, Functions and Data types: Description and syntax for all

RAPID instructions, functions, and data types.

• RAPID Kernel: A formal description of the RAPID programming language.

• System parameters: Description of system parameters and configuration workflows.

Continues on next page

 Product documentation, M2004

3HAC 18152-1 Revision: F8

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Application manuals

Specific applications (for example software or hardware options) are described in

Application manuals. An application manual can describe one or several applications.

An application manual generally contains information about:

• The purpose of the application (what it does and when it is useful).

• What is included (for example cables, I/O boards, RAPID instructions, system

parameters, DVD with PC software).

• How to install included or required hardware.

• How to use the application.

• Examples of how to use the application.

Operating manuals

The operating manuals describe hands-on handling of the products. The manuals are aimed

at those having first-hand operational contact with the product, that is production cell

operators, programmers, and trouble shooters.

The group of manuals includes (among others):

• Emergency safety information

• General safety information

• Getting started, IRC5 and RobotStudio

• Introduction to RAPID

• IRC5 with FlexPendant

• RobotStudio

• Trouble shooting, for the controller and manipulator.

Continued

 Safety

93HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Safety

Safety of personnel

A robot is heavy and extremely powerful regardless of its speed. A pause or long stop in

movement can be followed by a fast hazardous movement. Even if a pattern of movement is

predicted, a change in operation can be triggered by an external signal resulting in an

unexpected movement.

Therefore, it is important that all safety regulations are followed when entering safeguarded

space.

Safety regulations

Before beginning work with the robot, make sure you are familiar with the safety regulations

described in the manual Operating manual - General safety information.

 Safety

3HAC 18152-1 Revision: F10

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1 World Zones (608-1)

1.1. Overview

113HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1 World Zones (608-1)

1.1. Overview

Purpose

The purpose of World Zones is to stop the robot or set an output signal if the robot is inside a

special user-defined zone. Here are some examples of applications:

• When two robots share a part of their respective work areas. The possibility of the two

robots colliding can be safely eliminated by World Zones supervision.

• When a permanent obstacle or some temporary external equipment is located inside

the robot’s work area. A forbidden zone can be created to prevent the robot from

colliding with this equipment.

• Indication that the robot is at a position where it is permissible to start program

execution from a Programmable Logic Controller (PLC).

A world zone is supervised during robot movements both during program execution and

jogging. If the robot’s TCP reaches the world zone or if the axes reaches the world zone in

joints, the movement is stopped or a digital output signal is set.

WARNING!

For safety reasons, this software shall not be used for protection of personnel. Use hardware

protection equipment for that.

What is included

The RobotWare option World Zones gives you access to:

• instructions used to define volumes of various shapes

• instructions used to define joint zones in coordinates for axes

• instructions used to define and enable world zones

Basic approach

This is the general approach for setting up World Zones. For a more detailed example of how

this is done, see Code examples on page 14.

1. Declare the world zone as stationary or temporary.

2. Declare the shape variable.

3. Define the shape that the world zone shall have.

4. Define the world zone (that the robot shall stop or that an output signal shall be set when

reaching the volume).

Limitations

Supervision of a volume only works for the TCP. Any other part of the robot may pass

through the volume undetected. To be certain to prevent this, you can supervise a joint world

zone (defined byWZLimJointDef or WZHomeJointDef).

A variable of type wzstationary or wztemporary can not be redefined. They can only be

defined once (with WZLimSup or WZDOSet).

1 World Zones (608-1)

1.2. RAPID components

3HAC 18152-1 Revision: F12

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1.2. RAPID components

Data types

This is a brief description of each data type in World Zones. For more information, see

respective data type in Technical reference manual - RAPID Instructions, Functions and Data

types.

Instructions

This is a brief description of each instruction in World Zones. For more information, see

respective instruction in Technical reference manual - RAPID Instructions, Functions and

Data types.

Data type Description

wztemporary wztemporary is used to identify a temporary world zone and can be
used anywhere in the RAPID program.

Temporary world zones can be disabled, enabled again, or erased via
RAPID instructions. Temporary world zones are automatically erased
when a new program is loaded or when program execution start from
the beginning in the MAIN routine.

wzstationary wzstationary is used to identify a stationary world zone and can
only be used in an event routine connected to the event POWER ON.
For information on defining event routines, see Operating manual -
IRC5 with FlexPendant.

A stationary world zone is always active and is reactivated by a warm
start (switch power off then on, or change system parameters). It is not
possible to disable, enable or erase a stationary world zone via RAPID
instructions.

Stationary world zones shall be used if security is involved.

shapedata shapedata is used to describe the geometry of a world zone.

World zones can be defined in 4 different geometrical shapes:

• a straight box, with all sides parallel to the world coordinate
system

• a cylinder, parallel to the z axis of the world coordinate system

• a sphere

• a joint angle area for the robot axes and/or external axes

Instruction Description

WZBoxDef WZBoxDef is used to define a volume that has the shape of a straight
box with all its sides parallel to the axes of the world coordinate system.
The definition is stored in a variable of type shapedata.

The volume can also be defined as the inverse of the box (all volume
outside the box).

WZCylDef WZCylDef is used to define a volume that has the shape of a cylinder
with the cylinder axis parallel to the z-axis of the world coordinate
system. The definition is stored in a variable of type shapedata.

The volume can also be defined as the inverse of the cylinder (all
volume outside the cylinder).

WZSphDef WZSphDef is used to define a volume that has the shape of a sphere.
The definition is stored in a variable of type shapedata.

The volume can also be defined as the inverse of the sphere (all
volume outside the sphere).

Continues on next page

1 World Zones (608-1)

1.2. RAPID components

133HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Functions

World Zones does not include any RAPID functions.

WZLimJointDef WZLimJointDef is used to define joint coordinate for axes, to be used
for limitation of the working area. Coordinate limits can be set for both
the robot axes and external axes.

For each axis WZLimJointDef defines an upper and lower limit. For
rotational axes the limits are given in degrees and for linear axes the
limits are given in mm.

The definition is stored in a variable of type shapedata.

WZHomeJointDef WZHomeJointDef is used to define joint coordinates for axes, to be
used to identify a position in the joint space. Coordinate limits can be
set for both the robot axes and external axes.

For each axis WZHomeJointDef defines a joint coordinate for the
middle of the zone and the zones delta deviation from the middle. For
rotational axes the coordinates are given in degrees and for linear axes
the coordinates are given in mm.

The definition is stored in a variable of type shapedata.

WZLimSup WZLimSup is used to define, and enable, stopping the robot with an
error message when the TCP reaches the world zone. This supervision
is active both during program execution and when jogging.

When calling WZLimSup you specify whether it is a stationary world
zone, stored in a wzstationary variable, or a temporary world zone,
stored in a wztemporary variable.

WZDOSet WZDOSet is used to define, and enable, setting a digital output signal
when the TCP reaches the world zone.

When callingWZDOSet you specify whether it is a stationary world
zone, stored in a wzstationary variable, or a temporary world zone,
stored in a wztemporary variable.

WZDisable WZDisable is used to disable the supervision of a temporary world
zone.

WZEnable WZEnable is used to re-enable the supervision of a temporary world
zone.

A world zone is automatically enabled on creation. Enabling is only
necessary after it has been disabled with WZDisable.

WZFree WZFree is used to disable and erase a temporary world zone.

Instruction Description

Continued

1 World Zones (608-1)

1.3. Code examples

3HAC 18152-1 Revision: F14

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1.3. Code examples

Create protected box

To prevent the robot TCP from moving into stationary equipment, set up a stationary world

zone around the equipment.

The routine my_power_on should then be connected to the event POWER ON. For

information on how to do this, read about defining event routines in Operating manual - IRC5

with FlexPendant.

xx0300000178

VAR wzstationary obstacle;

PROC my_power_on()

VAR shapedata volume;

CONST pos p1 := [200, 100, 100];

CONST pos p2 := [600, 400, 400];

!Define a box between the corners p1 and p2

WZBoxDef \Inside, volume, p1, p2;

!Define and enable supervision of the box

WZLimSup \Stat, obstacle, volume;

ENDPROC

Continues on next page

1 World Zones (608-1)

1.3. Code examples

153HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Signal when robot is in position

When two robots share a work area it is important to know when a robot is out of the way,

letting the other robot move freely.

This example defines a home position where the robot is in a safe position and sets an output

signal when the robot is in its home position. The robot is standing on a travel track, handled

as external axis 1. No other external axes are active.

The shadowed area in the illustration shows the world zone.

xx0300000206

VAR wztemporary home;

PROC zone_output()

VAR shapedata joint_space;

!Define the home position

CONST jointtarget home_pos := [[0, -20, 0, 0, 0, 0], [0, 9E9,

9E9, 9E9, 9E9, 9E9]];

!Define accepted deviation from the home position

CONST jointtarget delta_pos := [[2, 2, 2, 2, 2, 2], [10, 9E9,

9E9, 9E9, 9E9, 9E9]];

!Define the shape of the world zone

WZHomeJointDef \Inside, joint_space, home_pos, delta_pos;

!Define the world zone, setting the

!signal do_home to 1 when in zone

WZDOSet \Temp, home \Inside, joint_space, do_home, 1;

ENDPROC

Continued

1 World Zones (608-1)

1.3. Code examples

3HAC 18152-1 Revision: F16

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

2 Fixed Position Events

2.1. Overview

173HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

2 Fixed Position Events

2.1. Overview

Purpose

The purpose of Fixed Position Events is to make sure a program routine is executed when the

position of the TCP is well defined.

If a move instruction is called with the zone argument set to fine, the next routine is always

executed once the TCP has reached its target. If a move instruction is called with the zone

argument set to a distance (for example z20), the next routine may be executed before the

TCP is even close to the target. This is because there is always a delay between the execution

of RAPID instructions and the robot movements.

Calling the move instruction with zone set to fine will slow down the movements. With

Fixed Position Events, a routine can be executed when the TCP is at a specified position

anywhere on the TCP path without slowing down the movement.

What is included

The RobotWare base functionality Fixed Position Events gives you access to:

• instructions used to define a position event

• instructions for moving the robot and executing the position event at the same time

• instructions for moving the robot and calling a procedure while passing the target,

without first defining a position event

Basic approach

Fixed Position Events can either be used with one simplified instruction calling a procedure

or it can be set up following these general steps. For more detailed examples of how this is

done, see Code examples on page 21.

1. Declare the position event.

2. Define the position event:

• when it shall occur, compared to the target position

• what it shall do

3. Call a move instruction that uses the position event. When the TCP is as close to the target

as defined, the event will occur.

2 Fixed Position Events

2.2. RAPID components and system parameters

3HAC 18152-1 Revision: F18

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

2.2. RAPID components and system parameters

Data types

This is a brief description of each data type in Fixed Position Events. For more information,

see the respective data type in Technical reference manual - RAPID Instructions, Functions

and Data types.

Instructions

This is a brief description of each instruction in Fixed Position Events. For more information,

see the respective instruction in Technical reference manual - RAPID Instructions, Functions

and Data types.

Data type Description

triggdata triggdata is used to store data about a position event.

A position event can take the form of setting an output signal or running
an interrupt routine at a specific position along the movement path of
the robot.

triggdata also contains information on when the action shall occur,
for example when the TCP is at a defined distance from the target.

triggdata is a non-value data type.

triggios triggios is used to store data about a position event used by the
instruction TriggLIOs.

triggios sets the value of an output signal using a num value.

triggiosdnum triggiosdnum is used to store data about a position event used by
the instruction TriggLIOs.

triggiosdnum sets the value of an output signal using a dnum value.

triggstrgo triggstrgo is used to store data about a position event used by the
instruction TriggLIOs.

triggstrgo sets the value of an output signal using a stringdig
value (string containing a number).

Instruction Description

TriggIO TriggIO defines the setting of an output signal and when to set that
signal. The definition is stored in a variable of type triggdata.

TriggIO can define the setting of the signal to occur at a certain
distance (in mm) from the target, or a certain time from the target. It is
also possible to set the signal at a defined distance or time from the
starting position.

By setting the distance to 0 (zero), the signal will be set when the TCP
is as close to the target as it gets (the middle of the corner path).

TriggEquip TriggEquip works like TriggIO, with the difference that
TriggEquip can compensate for the internal delay of the external
equipment.

For example, the signal to a glue gun must be set a short time before
the glue is pressed out and the gluing begins.

TriggInt TriggInt defines when to run an interrupt routine. The definition is
stored in a variable of type triggdata.

TriggInt defines at what distance (in mm) from the target (or from the
starting position) the interrupt routine shall be called. By setting the
distance to 0 (zero), the interrupt will occur when the TCP is as close
to the target as it gets (the middle of the corner path).

Continues on next page

2 Fixed Position Events

2.2. RAPID components and system parameters

193HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Functions

Fixed Position Events includes no RAPID functions.

TriggCheckIO TriggCheckIO defines a test of an input or output signal, and when
to perform that test. The definition is stored in a variable of type
triggdata.

TriggCheckIO defines a test, comparing an input or output signal
with a value. If the test fails, an interrupt routine is called. As an option
the robot movement can be stopped when the interrupt occurs.

TriggCheckIO can define the test to occur at a certain distance (in
mm) from the target, or a certain time from the target. It is also possible
to perform the test at a defined distance or time from the starting
position.

By setting the distance to 0 (zero), the interrupt routine will be called
when the TCP is as close to the target as it gets (the middle of the
corner path).

TriggRampAO TriggRampAO defines the ramping up or down of an analog output
signal and when this ramping is performed. The definition is stored in
a variable of type triggdata.

TriggRampIO defines where the ramping of the signal is to start and
the length of the ramping.

TriggL TriggL is a move instruction, similar to MoveL. In addition to the
movement the TriggL instruction can set output signals, run interrupt
routines and check input or output signals at fixed positions.

TriggL executes up to 8 position events stored as triggdata. These
must be defined before calling TriggL.

TriggC TriggC is a move instruction, similar to MoveC. In addition to the
movement the TriggC instruction can set output signals, run interrupt
routines and check input or output signals at fixed positions.

TriggC executes up to 8 position events stored as triggdata. These
must be defined before calling TriggC.

TriggJ TriggJ is a move instruction, similar to MoveJ. In addition to the
movement the TriggJ instruction can set output signals, run interrupt
routines and check input or output signals at fixed positions.

TriggJ executes up to 8 position events stored as triggdata. These
must be defined before calling TriggJ.

TriggLIOs TriggLIOs is a move instruction, similar to MoveL. In addition to the
movement the TriggLIOs instruction can set output signals at fixed
positions.

TriggLIOs is similar to the combination of TriggEquip and
TriggL. The difference is that TriggLIOs can handle up to 50
position events stored as an array of datatype triggios,
triggiosdnum, or triggstrgo.

MoveLSync MoveLSync is a linear move instruction that calls a procedure in the
middle of the corner path.

MoveCSync MoveCSync is a circular move instruction that calls a procedure in the
middle of the corner path.

MoveJSync MoveJSync is a joint move instruction that calls a procedure in the
middle of the corner path.

Instruction Description

Continued

Continues on next page

2 Fixed Position Events

2.2. RAPID components and system parameters

3HAC 18152-1 Revision: F20

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

System parameters

This is a brief description of each parameter in Fixed Position Events. For more information,

see the respective parameter in Technical reference manual - System parameters.

Parameter Description

Event Preset Time TriggEquip takes advantage of the delay between the RAPID
execution and the robot movement, which is about 70 ms. If the delay
of the equipment is longer than 70 ms, then the delay of the robot
movement can be increased by configuring Event preset time.

Event preset time belongs to the type Motion System in the topic
Motion.

Continued

2 Fixed Position Events

2.3. Code examples

213HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

2.3. Code examples

Example without Fixed Position Events

Without the use of Fixed Position Events, the code can look like this:

MoveJ p1, vmax, fine, tool1;

MoveL p2, v1000, z20, tool1;

SetDO do1, 1;

MoveL p3, v1000, fine, tool1;

Result

The code specifies that the TCP should reach p2 before setting do1. Because the robot path

is delayed compared to instruction execution, do1 is set when the TCP is at the position

marked with X (see illustration).

xx0300000151

Example with TriggIO and TriggL instructions

Setting the output signal 30 mm from the target can be arranged by defining the position event

and then moving the robot while the system is executing the position event.

VAR triggdata do_set;

!Define that do1 shall be set when 30 mm from target

TriggIO do_set, 30 \DOp:=do1, 1;

MoveJ p1, vmax, fine, tool1;

!Move to p2 and let system execute do_set

TriggL p2, v1000, do_set, z20, tool1;

MoveL p3, v1000, fine, tool1;

Result

The signal do1 will be set when the TCP is 30 mm from p2. do1 is set when the TCP is at

the position marked with X (see illustration).

xx0300000158

Continues on next page

2 Fixed Position Events

2.3. Code examples

3HAC 18152-1 Revision: F22

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Example with MoveLSync instruction

Calling a procedure when the robot path is as close to the target as possible can be done with

one instruction call.

MoveJ p1, vmax, fine, tool1;

!Move to p2 while calling a procedure

MoveLSync p2, v1000, z20, tool1, "proc1";

MoveL p3, v1000, fine, tool1;

Result

The procedure will be called when the TCP is at the position marked with X (see illustration).

xx0300000165

Continued

3 Independent Axes (610-1)

3.1. Overview

233HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

3 Independent Axes (610-1)

3.1. Overview

Purpose

The purpose of Independent Axes is to move an axis independently of other axes in the robot

system. Some examples of applications are:

• Move an external axis holding an object (for example rotating an object while the

robot is spray painting it).

• Save cycle time by performing a robot task at the same time as an external axis

performs another.

• Continuously rotate robot axis 6 (for polishing or similar tasks).

• Reset the measurement system after an axis has rotated multiple revolutions in the

same direction. Saves cycle time compared to physically winding back.

An axis can move independently if it is set to independent mode. An axis can be changed to

independent mode and later back to normal mode again.

What is included

The RobotWare option Independent Axes gives you access to:

• instructions used to set independent mode and specify the movement for an axis

• an instruction for changing back to normal mode and/or reset the measurement system

• functions used to verify the status of an independent axis

• system parameters for configuration.

Basic approach

This is the general approach for moving an axis independently. For detailed examples of how

this is done, see Code examples on page 27.

1. Call an independent move instruction to set the axis to independent mode and move it.

2. Let the robot execute another instruction at the same time as the independent axis moves.

3. When both robot and independent axis has stopped, reset the independent axis to normal

mode.

Reset axis

Even without being in independent mode, an axis might rotate only in one direction and

eventually loose precision. The measurement system can then be reset with the instruction

IndReset.

 The recommendation is to reset the measurement system for an axis before its motor has

rotated 10 000 revolutions in the same direction.

Continues on next page

3 Independent Axes (610-1)

3.1. Overview

3HAC 18152-1 Revision: F24

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Limitations

A mechanical unit may not be deactivated when one of its axes is in independent mode.

Axes in independent mode cannot be jogged.

The only robot axis that can be used as an independent axis is axis number 6. On IRB 2400

and IRB 4400, the instruction IndReset can also be used for axis 4.

Continued

3 Independent Axes (610-1)

3.2. System parameters

253HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

3.2. System parameters

About the system parameters

This is a brief description of each parameter in Independent Axes. For more information, see

the respective parameter in Technical reference manual - System parameters.

Arm

These parameters belongs to the type Arm in the topic Motion.

Transmission

These parameters belong to the type Transmission in the topic Motion.

Parameter Description

Independent Joint Flag that determines if independent mode is allowed for the axis.

Independent Upper
Joint Bound

Defines the upper limit of the working area for the joint when operating
in independent mode.

Independent Lower
Joint Bound

Defines the lower limit of the working area for the joint when operating
in independent mode.

Parameter Description

Transmission Gear
High

Independent Axes requires high resolution in transmission gear ratio,
which is therefore defined as Transmission Gear High divided by
Transmission Gear Low. If no smaller number can be used, the trans-
mission gear ratio will be correct if Transmission Gear High is set to the
number of cogs on the robot axis side, and Transmission Gear Low is
set to the number of cogs on the motor side.

Transmission Gear
Low

See Transmission Gear High.

3 Independent Axes (610-1)

3.3. RAPID components

3HAC 18152-1 Revision: F26

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

3.3. RAPID components

Data types

There are no data types for Independent Axes.

Instructions

This is a brief description of each instruction in Independent Axes. For more information, see

respective instruction in Technical reference manual - RAPID Instructions, Functions and

Data types.

An independent move instruction is executed immediately, even if the axis is being moved at

the time. If a new independent move instruction is executed before the last one is finished, the

new instruction immediately overrides the old one.

Functions

This is a brief description of each function in Independent Axes. For more information, see

respective function in Technical reference manual - RAPID Instructions, Functions and Data

types.

Instruction Description

IndAMove IndAMove (Independent Absolute position Movement) change an axis
to independent mode and move the axis to a specified position.

IndCMove IndCMove (Independent Continuous Movement) change an axis to
independent mode and start moving the axis continuously at a
specified speed.

IndDMove IndDMove (Independent Delta position Movement) change an axis to
independent mode and move the axis a specified distance.

IndRMove IndRMove (Independent Relative position Movement) change a
rotational axis to independent mode and move the axis to a specific
position within one revolution.

Because the revolution information in the position is omitted,
IndRMove never rotates more than one axis revolution.

IndReset IndReset is used to change an independent axis back to normal
mode.

IndReset can move the measurement system for a rotational axis a
number of axis revolutions. The resolution of positions is decreased
when moving away from logical position 0, and winding the axis back
would take time. By moving the measurement system the resolution is
maintained without physically winding the axis back.

Both the independent axis and the robot must stand still when calling
IndReset.

Function Description

IndInpos IndInposindicates whether an axis has reached the selected
position.

IndSpeed IndSpeed indicates whether an axis has reached the selected speed.

3 Independent Axes (610-1)

3.4. Code examples

273HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

3.4. Code examples

Save cycle time

An object in station A needs welding in two places. The external axis for station A can turn

the object in position for the second welding while the robot is welding on another object.

This saves cycle time compared to letting the robot wait while the external axis moves.

!Perform first welding in station A

!Call subroutine for welding

weld_stationA_1;

!Move the object in station A, axis 1, with

!independent movement to position 90 degrees

!at the speed 20 degrees/second

IndAMove Station_A,1\ToAbsNum:=90,20;

!Let the robot perform another task while waiting

!Call subroutine for welding

weld_stationB_1;

!Wait until the independent axis is in position

WaitUntil IndInpos(Station_A,1) = TRUE;

WaitTime 0.2;

!Perform second welding in station A

!Call subroutine for welding

weld_stationA_2;

Continues on next page

3 Independent Axes (610-1)

3.4. Code examples

3HAC 18152-1 Revision: F28

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Polish by rotating axis 6

To polish an object the robot axis 6 can be set to continuously rotate.

Set robot axis 6 to independent mode and continuously rotate it. Move the robot over the area

you want to polish. Stop movement for both robot and independent axis before changing back

to normal mode. After rotating the axis many revolutions, reset the measurement system to

maintain the resolution.

Note that, for this example to work, the parameter Independent Joint for rob1_6 must be set

to Yes.

PROC Polish()

!Change axis 6 of ROB_1 to independent mode and

!rotate it with 180 degrees/second

IndCMove ROB_1, 6, 180;

!Wait until axis 6 is up to speed

WaitUntil IndSpeed(ROB_1,6\InSpeed);

WaitTime 0.2;

!Move robot where you want to polish

MoveL p1,v10, z50, tool1;

MoveL p2,v10, fine, tool1;

!Stop axis 6 and wait until it's still

IndCMove ROB_1, 6, 0;

WaitUntil IndSpeed(ROB_1,6\ZeroSpeed);

WaitTime 0.2;

!Change axis 6 back to normal mode and

!reset measurement system (close to 0)

IndReset ROB_1, 6 \RefNum:=0 \Short;

ENDPROC

Reset an axis

This is an example of how to reset the measurement system for axis 1 in station A. The

measurement system will change a whole number of revolutions, so it is close to zero

(± 180°).

IndReset Station_A, 1 \RefNum:=0 \Short;

Continued

4 Path Recovery (611-1)

4.1. Overview

293HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

4 Path Recovery (611-1)

4.1. Overview

Purpose

Path Recovery is used to store the current movement path, perform some robot movements

and then restore the interrupted path. This is useful when an error or interrupt occurs during

the path movement. An error handler or interrupt routine can perform a task and then recreate

the path.

For applications like arc welding and gluing, it is important to continue the work from the

point where the robot left off. If the robot started over from the beginning, then the work piece

would have to be scrapped.

If a process error occurs when the robot is inside a work piece, moving the robot straight out

might cause a collision. By using the path recorder, the robot can instead move out along the

same path it came in.

What is included

The RobotWare option Path Recovery gives you access to:

• instructions to suspend and resume the coordinated synchronized movement mode on

the error or interrupt level.

• a path recorder, with the ability to move the TCP out from a position along the same

path it came.

Limitations

The instructions StorePath and RestoPath only handles movement path data. The stop

position must also be stored.

Movements using the path recorder has to be performed on trap-level, i.e. StorePath has to

be executed prior to PathRecMoveBwd.

4 Path Recovery (611-1)

4.2. RAPID components

3HAC 18152-1 Revision: F30

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

4.2. RAPID components

Data types

This is a brief description of each data type in Path Recovery. For more information, see the

respective data type in Technical reference manual - RAPID Instructions, Functions and Data

types.

Instructions

This is a brief description of each instruction in Path Recovery. For more information, see the

respective instruction in Technical reference manual - RAPID Instructions, Functions and

Data types.

Functions

This is a brief description of each function in Path Recovery. For more information, see the

respective function in Technical reference manual - RAPID Instructions, Functions and Data

types.

Data type Description

pathrecid pathrecid is used to identify a breakpoint for the path recorder.

Instruction Description

StorePath StorePath is used to store the movement path being executed when
an error or interrupt occurs.

StorePath is included in RobotWare base.

RestoPath RestoPath is used to restore the path that was stored by StorePath.

RestoPath is included in RobotWare base.

PathRecStart PathRecStart is used to start recording the robot’s path. The path
recorder will store path information during execution of the robot
program.

PathRecStop PathRecStop is used to stop recording the robot's path.

PathRecMoveBwd PathRecMoveBwd is used to move the robot backwards along a
recorded path.

PathRecMoveFwd PathRecMoveFwd is used to move the robot back to the position
where PathRecMoveBwd was executed.

It is also possible to move the robot partly forward by supplying an
identifier that has been passed during the backward movement.

SyncMoveSuspend SyncMoveSuspend is used to suspend synchronized movements
mode and set the system to independent movement mode.

SyncMoveResume SyncmoveResume is used to go back to synchronized movements
from independent movement mode.

Function Description

PathRecValidBwd PathRecValidBwd is used to check if the path recorder is active and
if a recorded backward path is available.

PathRecValidFwd PathRecValidFwd is used to check if the path recorder can be used
to move forward. The ability to move forward with the path recorder
implies that the path recorder must have been ordered to move
backwards earlier.

4 Path Recovery (611-1)

4.3. Store current path

313HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

4.3. Store current path

Why store the path?

The simplest way to use Path Recovery is to only store the current path to be able to restore

it after resolving an error or similar action.

Let's say that an error occur during arc welding. To resolve the error the robot might have to

be moved away from the part. When the error is resolved, the welding should be continued

from the point it left off. This is solved by storing the path information and the position of the

robot before moving away from the path. The path can then be restored and the welding

resumed after the error has been handled.

Basic approach

This is the general approach for storing the current path:

1. At the start of an error handler or interrupt routine:

A. stop the movement

B. store the movement path

C. store the stop position

2. At the end of the error handler or interrupt routine:

A. move to the stored stop position

B. restore the movement path

C. start the movement

Example

This is an example of how to use Path Recovery in error handling. First the path and position

is stored, the error is corrected and then the robot is moved back in position and the path is

restored.

MoveL p100, v100, z10, gun1;

...

ERROR

IF ERRNO=MY_GUN_ERR THEN

gun_cleaning();

ENDIF

...

PROC gun_cleaning()

VAR robtarget p1;

!Stop the robot movement, if not already stopped.

StopMove;

!Store the movement path and current position

StorePath;

p1 := CRobT(\Tool:=gun1\WObj:=wobj0);

Continues on next page

4 Path Recovery (611-1)

4.3. Store current path

3HAC 18152-1 Revision: F32

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

!Correct the error

MoveL pclean, v100, fine, gun1;

...

!Move the robot back to the stored position

MoveL p1, v100, fine, gun1;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

Store path in a MultiMove system

In a MultiMove system the robots can keep the synchronized movement mode after

StorePath with the argument KeepSync. However the robots can’t switch from

independent mode to synchronized mode, only the other way around.

After a Multimove system is set with the argument KeepSync, the system can change

between synchronized, semi coordinated and independent mode on the StorePath level.

The changes are made with the instructions SyncMoveResume and SyncMoveSuspend.

“SyncArc” example with coordinated synchronized movement

This is an example on how to use Path Recovery and keep synchronized mode in the error

handler for a MultiMove system. Two robots perform arc welding on the same work piece.

To make the example simple and general, we use move instructions instead of weld

instructions. The work object is rotated by a positioner. For more information on the SyncArc

example, see Application manual - MultiMove.

T_ROB1 task program
MODULE module1

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3} := [["T_ROB1"],["T_ROB2"],["T_STN1"]];

PERS wobjdata wobj_stn1 := [FALSE, FALSE, "STN_1", [[0, 0, 0],

[1, 0, 0 ,0]], [[0, 0, 250], [1, 0, 0, 0]]];

TASK PERS tooldata tool1 := ...

CONST robtarget p100 := ...

CONST robtarget p199 := ...

PROC main()

...

SyncMove;

ENDPROC

PROC SyncMove()

MoveJ p100, v1000, z50, tool1;

WaitSyncTask sync1, all_tasks;

MoveL p101, v500, fine, tool1;

SyncMoveOn sync2, all_tasks;

Continued

Continues on next page

4 Path Recovery (611-1)

4.3. Store current path

333HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

MoveL p102\ID:=10, v300, z10, tool1 \WObj:=wobj_stn1;

MoveC p103, p104\ID:=20, v300, z10, tool1 \WObj:=wobj_stn1;

MoveL p105\ID:=30, v300, z10, tool1 \WObj:=wobj_stn1;

MoveC p106, p101\ID:=40, v300, fine, tool1 \WObj:=wobj_stn1;

SyncMoveOff sync3;

MoveL p199, v1000, fine, tool1;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

gun_cleaning();

ENDIF

UNDO

SyncMoveUndo;

ENDPROC

PROC gun_cleaning()

VAR robtarget p1;

!Store the movement path and current position

! and keep syncronized mode.

StorePath \KeepSync;

p1 := CRobT(\Tool:=tool1 \WObj:=wobj_stn1);

!Correct the error

MoveL pclean1 \ID:=50, v100, fine, tool1 \WObj:=wobj_stn1;

...

!Move the robot back to the stored position

MoveL p1 \ID:=60, v100, fine, tool1 \WObj:=wobj_stn1;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

ENDMODULE

T_ROB2 task program
MODULE module2

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3};

PERS wobjdata wobj_stn1;

TASK PERS tooldata tool2 := ...

CONST robtarget p200 := ...

CONST robtarget p299 := ...

PROC main()

...

SyncMove;

ENDPROC

PROC SyncMove()

MoveJ p200, v1000, z50, tool2;

Continued

Continues on next page

4 Path Recovery (611-1)

4.3. Store current path

3HAC 18152-1 Revision: F34

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

WaitSyncTask sync1, all_tasks;

MoveL p201, v500, fine, tool2;

SyncMoveOn sync2, all_tasks;

MoveL p202\ID:=10, v300, z10, tool2 \WObj:=wobj_stn1;

MoveC p203, p204\ID:=20, v300, z10, tool2 \WObj:=wobj_stn1;

MoveL p205\ID:=30, v300, z10, tool2 \WObj:=wobj_stn1;

MoveC p206, p201\ID:=40, v300, fine, tool2 \WObj:=wobj_stn1;

SyncMoveOff sync3;

MoveL p299, v1000, fine, tool2;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

gun_cleaning();

ENDIF

UNDO

SyncMoveUndo;

ENDPROC

PROC gun_cleaning()

VAR robtarget p2;

!Store the movement path and current position.

StorePath \KeepSync;

p2 := CRobT(\Tool:=tool2 \WObj:=wobj_stn1);

!Correct the error

MoveL pclean2 \ID:=50, v100, fine, tool2 \WObj:=wobj_stn1;

...

!Move the robot back to the stored position.

MoveL p2 \ID:=60, v100, fine, tool2 \WObj:=wobj_stn1;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

ENDMODULE

T_STN1 task program
MODULE module3

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3};

CONST jointtarget angle_neg20 :=[[9E9, 9E9, 9E9, 9E9, 9E9,

9E9], [-20, 9E9, 9E9, 9E9, 9E9, 9E9]];

...

CONST jointtarget angle_340 :=[[9E9, 9E9, 9E9, 9E9, 9E9, 9E9],[

340, 9E9, 9E9, 9E9, 9E9, 9E9]];

PROC main()

...

SyncMove;

...

Continued

Continues on next page

4 Path Recovery (611-1)

4.3. Store current path

353HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

ENDPROC

PROC SyncMove()

MoveExtJ angle_neg20, vrot50, fine;

WaitSyncTask sync1, all_tasks;

! Wait for the robots

SyncMoveOn sync2, all_tasks;

MoveExtJ angle_20\ID:=10, vrot100, z10;

MoveExtJ angle_160\ID:=20, vrot100, z10;

MoveExtJ angle_200\ID:=30, vrot100, z10;

MoveExtJ angle_340\ID:=40, vrot100, fine;

SyncMoveOff sync3;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

gun_cleaning();

ENDIF

UNDO

SyncMoveUndo;

ENDPROC

PROC gun_cleaning()

VAR jointtarget resume_angle;

!Store the movement path and current angle.

StorePath \KeepSync;

resume_angle := CJointT();

!Correct the error

MoveExtJ clean_angle \ID:=50, vrot100, fine;

...

!Move the robot back to the stored position.

MoveExtJ resume_angle \ID:=60, vrot100, fine;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

ENDMODULE

Continued

Continues on next page

4 Path Recovery (611-1)

4.3. Store current path

3HAC 18152-1 Revision: F36

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Suspend and resume synchronized movements in the “SyncArc” example

SyncMoveSuspend is used to suspend synchronized movements mode and set the system to

independent or semi coordinated movement mode.

SyncMoveResume is used to go back once more to synchronized movements.

These instructions can only be used after StorePath\KeepSync has been executed.

T_ROB1
PROC gun_cleaning()

VAR robtarget p1;

!Store the movement path and current position

! and keep syncronized mode.

StorePath \KeepSync;

p1 := CRobT(\Tool:=tool1 \WObj:=wobj_stn1);

!Move in synchronized motion mode

MoveL p104 \ID:=50, v100, fine, tool1 \WObj:=wobj_stn1;

SyncMoveSuspend;

!Move in independent mode

MoveL pclean1, v100, fine, tool1;

...

!Move the robot back to the stored position

SyncMoveResume;

MoveL p1 \ID:=60, v100, fine, tool1 \WObj:=wobj_stn1;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

T_ROB2
PROC gun_cleaning()

VAR robtarget p2;

!Store the movement path and current position.

StorePath \KeepSync;

p2 := CRobT(\Tool:=tool2 \WObj:=wobj_stn1);

!Move in synchronized motion mode

MoveL p104 \ID:=50, v100, fine, tool2 \WObj:=wobj_stn1;

SyncMoveSuspend;

!Move in independent mode

MoveL pclean2 v100, fine, tool2;

...

!Move the robot back to the stored position.

SyncMoveResume;

!Move in synchronized motion mode

MoveL p2 \ID:=60, v100, fine, tool2 \WObj:=wobj_stn1;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

Continued

Continues on next page

4 Path Recovery (611-1)

4.3. Store current path

373HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

ENDPROC

T_STN1
PROC gun_cleaning()

VAR jointtarget resume_angle;

!Store the movement path and current angle.

StorePath \KeepSync;

resume_angle := CJointT();

!Move in synchronized motion mode

MoveExtJ p1clean_angle \ID:=50, vrot100, fine;

SyncMoveSuspend;

! Move in independent mode

MoveExtJ p2clean_angle,vrot, fine;

...

!Move the robot back to the stored position.

SyncMoveResume;

! Move in synchronized motion mode

MoveExtJ resume_angle \ID:=60, vrot100, fine;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

Continued

4 Path Recovery (611-1)

4.4. Path recorder

3HAC 18152-1 Revision: F38

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

4.4. Path recorder

What is the path recorder

The path recorder can memorize a number of move instructions. This memory can then be

used to move the robot backwards along that same path.

How to use the path recorder

This is the general approach for using the path recorder:

1. Start the path recorder

2. Move the robot with regular move, or process, instructions

3. Store the current path

4. Move backwards along the recorded path

5. Resolve the error

6. Move forward along the recorded path

7. Restore the interrupted path

Lift the tool

When the robot moves backward in its own track, you may want to avoid scraping the tool

against the work piece. For a process like arc welding, you want to stay clear of the welding

seam.

By using the argument ToolOffs in the instructions PathRecMoveBwd and

PathRecMoveFwd, you can set an offset for the TCP. This offset is set in tool coordinates,

which means that if it is set to [0,0,10] the tool will be 10 mm from the work object when it

moves back along the recorded path.

xx0400000828

NOTE!

When a MultiMove system is in synchronized mode all tasks must use ToolOffs if a tool is

going to be lifted.

However if you only want to lift one tool, set ToolOffs=[0,0,0] in the other tasks.

Continues on next page

4 Path Recovery (611-1)

4.4. Path recorder

393HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Simple example

If an error occurs between p1 and p4, the robot will return to p1 where the error can be

resolved. When the error has been resolved, the robot continues from where the error

occurred.

When p4 is reached without any error, the path recorder is switched off. The robot then moves

from p4 to p5 without the path recorder.

...

VAR pathrecid start_id;

...

MoveL p1, vmax, fine, tool1;

PathRecStart start_id;

MoveL p2, vmax, z50, tool1;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, fine, tool1;

PathRecStop \Clear;

MoveL p5, vmax, fine, tool1;

ERROR

StorePath;

PathRecMoveBwd;

! Fix the problem

PathRecMoveFwd;

RestoPath;

StartMove;

RETRY;

ENDIF

...

Complex example

In this example, the path recorder is used for two purposes:

• If an error occurs, the operator can choose to back up to p1 or to p2. When the error

has been resolved, the interrupted movement is resumed.

• Even if no error occurs, the path recorder is used to move the robot from p4 to p1. This

technique is useful when the robot is in a narrow position that is difficult to move out

of.

Note that if an error occurs during the first move instruction, between p1 and p2, it is not

possible to go backwards to p2. If the operator choose to go back to p2, PathRecValidBwd

is used to see if it is possible. Before the robot is moved forward to the position where it was

interrupted, PathRecValidFwd is used to see if it is possible (if the robot never backed up

it is already in position).

Continued

Continues on next page

4 Path Recovery (611-1)

4.4. Path recorder

3HAC 18152-1 Revision: F40

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

...

VAR pathrecid origin_id;

VAR pathrecid corner_id;

VAR num choice;

...

MoveJ p1, vmax, z50, tool1;

PathRecStart origin_id;

MoveJ p2, vmax, z50, tool1;

PathRecStart corner_id;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, fine, tool1;

! Use path record to move safely to p1

StorePath;

PathRecMoveBwd \ID:=origin_id

\ToolOffs:=[0,0,10];

RestoPath;

PathRecStop \Clear;

Clear Path;

Start Move;

ERROR

StorePath;

! Ask operator how far to back up

TPReadFK choice,"Extract to:", stEmpty, stEmpty,

stEmpty, "Origin", "Corner";

IF choice=4 THEN

! Back up to p1

PathRecMoveBwd \ID:=origin_id

\ToolOffs:=[0,0,10];

ELSEIF choice=5 THEN

! Verify that it is possible to back to p2,

IF PathRecValidBwd(\ID:=corner_id) THEN

! Back up to p2

PathRecMoveBwd \ID:=corner_id

\ToolOffs:=[0,0,10];

ENDIF

ENDIF

! Fix the problem

! Verify that there is a path record forward

IF PathRecValidFwd() THEN

! Return to where the path was interrupted

PathRecMoveFwd \ToolOffs:=[0,0,10];

Continued

Continues on next page

4 Path Recovery (611-1)

4.4. Path recorder

413HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

ENDIF

! Restore the path and resume movement

RestoPath;

StartMove;

RETRY;

...

Resume path recorder

If the path recorder is stopped, it can be started again from the same position without loosing

its history.

In the example below, the PathRecMoveBwd instruction will back the robot to p1. If the robot

had been in any other position than p2 when the path recorder was restarted, this would not

have been possible.

For more information, see the section about PathRecStop in Technical reference manual -

RAPID Instructions, Functions and Data types.

...

MoveL p1, vmax, z50, tool1;

PathRecStart id1;

MoveL p2, vmax, z50, tool1;

PathRecStop;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStart id2;

MoveL p5, vmax, z50, tool1;

StorePath;

PathRecMoveBwd \ID:=id1;

RestoPath;

...

Continued

Continues on next page

4 Path Recovery (611-1)

4.4. Path recorder

3HAC 18152-1 Revision: F42

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

“SyncArc” example with coordinated synchronized movement

This is an example on how to use Path Recorder in error handling for a MultiMove system.

In this example two robots perform arc welding on the same work piece. To make the example

simple and general, we use move instructions instead of weld instructions. The work object

is rotated by a positioner.

For more information on the SyncArc example, see Application manual - MultiMove.

T_ROB1 task program
MODULE module1

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3} := [["T_ROB1"],["T_ROB2"],["T_STN1"]];

PERS wobjdata wobj_stn1 := [FALSE, FALSE, "STN_1",[[0, 0, 0],

[1, 0, 0 ,0]], [[0, 0,250], [1, 0, 0, 0]]];

TASK PERS tooldata tool1 := ...

CONST robtarget p100 := ...

CONST robtarget p199 := ...

PROC main()

...

SyncMove;

ENDPROC

PROC SyncMove()

WaitSyncTask sync1, all_tasks;

MoveJ p100, v1000, z50, tool1;

! Start recording

PathRecStart HomeROB1;

MoveL p101, v500, fine, tool1;

SyncMoveOn sync2, all_tasks;

MoveL p102\ID:=10, v300, z10, tool1 \WObj:=wobj_stn1;

MoveC p103, p104\ID:=20, v300, z10, tool1 \WObj:=wobj_stn1;

MoveL p105\ID:=30, v300, z10, tool1 \WObj:=wobj_stn1;

MoveC p106, p101\ID:=40, v300, fine, tool1 \WObj:=wobj_stn1;

!Stop recording

PathRecStop \Clear;

SyncMoveOff sync3;

MoveL p199, v1000, fine, tool1;

ERROR

! Weld error in this program task

IF ERRNO = AW_WELD_ERR THEN

gun_cleaning();

ENDIF

UNDO

SyncMoveUndo;

ENDPROC

Continued

Continues on next page

4 Path Recovery (611-1)

4.4. Path recorder

433HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

PROC gun_cleaning()

VAR robtarget p1;

!Store the movement path

IF IsSyncMoveOn() THEN

StorePath \KeepSync;

ELSE

StorePath;

ENDIF

!Move this robot backward to p100.

PathRecMoveBwd \ID:=HomeROB1 \ToolOffs:=[0,0,10];

!Correct the error

MoveJ pclean1 ,v100, fine, tool1;

...

!Move the robot back to p100

MoveJ p100, v100, fine, tool1;

PathRecMoveFwd \ToolOffs:=[0,0,10];

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

ENDMODULE

T_ROB2 task program
MODULE module2

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3};

PERS wobjdata wobj_stn1;

TASK PERS tooldata tool2 := ...

CONST robtarget p200 := ...

CONST robtarget p299 := ...

PROC main()

...

SyncMove;

ENDPROC

PROC SyncMove()

WaitSyncTask sync1, all_tasks;

MoveJ p200, v1000, z50, tool2;

PathRecStart HomeROB2;

MoveL p201, v500, fine, tool2;

SyncMoveOn sync2, all_tasks;

MoveL p202\ID:=10, v300, z10, tool2 \WObj:=wobj_stn1;

MoveC p203, p204\ID:=20, v300, z10, tool2 \WObj:=wobj_stn1;

MoveL p205\ID:=30, v300, z10, tool2 \WObj:=wobj_stn1;

MoveC p206, p201\ID:=40, v300, fine, tool2 \WObj:=wobj_stn1;

PathRecStop \Clear;

Continued

Continues on next page

4 Path Recovery (611-1)

4.4. Path recorder

3HAC 18152-1 Revision: F44

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

SyncMoveOff sync3;

MoveL p299, v1000, fine, tool2;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

gun_move_out();

ENDIF

UNDO

SyncMoveUndo;

ENDPROC

PROC gun_move_out()

IF IsSyncMoveOn() THEN

StorePath \KeepSync;

ELSE

StorePath;

ENDIF

! Move this robot backward to p201

PathRecMoveBwd \ToolOffs:=[0,0,10];

! Wait for the other gun to get clean

PathRecMoveFwd \ToolOffs:=[0,0,10];

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

ENDMODULE

T_STN1 task program
MODULE module3

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3};

CONST jointtarget angle_neg20 :=[[9E9, 9E9, 9E9, 9E9, 9E9,

9E9], [-20, 9E9, 9E9, 9E9, 9E9, 9E9]];

...

CONST jointtarget angle_340 :=[[9E9, 9E9, 9E9, 9E9, 9E9, 9E9],[

340, 9E9, 9E9, 9E9,9E9, 9E9]];

PROC main()

...

SyncMove;

...

ENDPROC

PROC SyncMove()

WaitSyncTask sync1, all_tasks;

MoveExtJ angle_neg20, vrot50, fine;

PathRecStart HomeSTN1;

SyncMoveOn sync2, all_tasks;

MoveExtJ angle_20\ID:=10, vrot100, z10;

Continued

Continues on next page

4 Path Recovery (611-1)

4.4. Path recorder

453HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

MoveExtJ angle_160\ID:=20, vrot100, z10;

MoveExtJ angle_200\ID:=30, vrot100, z10;

MoveExtJ angle_340\ID:=40, vrot100, fine;

PathRecStop \Clear;

SyncMoveOff sync3;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

gun_move_out();

ENDIF

UNDO

SyncMoveUndo;

ENDPROC

PROC gun_move_out()

!Store the movement

IF IsSyncMoveOn() THEN

StorePath \KeepSync;

ELSE

StorePath;

ENDIF

!Move the manipulator backward to angle_neg 20

PathRecMoveBwd \ToolOffs:=[0,0,0];

...

!Wait for the gun to get clean

PathRecMoveFwd \ToolOffs:=[0,0,0];

RestoPath;

StartMove;

RETRY;

ENDPROC

Continued

4 Path Recovery (611-1)

4.4. Path recorder

3HAC 18152-1 Revision: F46

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

5 Path Offset (612-1)

5.1. Overview

473HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

5 Path Offset (612-1)

5.1. Overview

Purpose

The purpose of Path Offset is to be able to make online adjustments of the robot path

according to input from sensors. With the set of instructions that Path Offset offers, the robot

path can be compared and adjusted with the input from sensors.

What is included

The RobotWare option Path Offset gives you access to:

• the data type corrdescr

• the instructions CorrCon, CorrDiscon, CorrClear and CorrWrite

• the function CorrRead

Basic approach

This is the general approach for setting up Path Offset. For a detailed example of how this is

done, see Code example on page 50.

1. Declare the correction generator.

2. Connect the correction generator.

3. Define a trap routine that determines the offset and writes it to the correction generator.

4. Define an interrupt to frequently call the trap routine.

5. Call a move instruction using the correction. The path will be repeatedly corrected.

NOTE!

If two or more move instructions are called after each other with the\Corr switch it is

important to know that all \Corr offsets are reset each time the robot starts from a finepoint.

So ,when using finepoints, on the second move instruction the controller does not know that

the path already has an offset. To avoid any strange behavior it is recommended only to use

zones together with the \Corr switch and avoid finepoints.

Limitations

It is possible to connect several correction generators at the same time (for instance one for

corrections along the Z axis and one for corrections along the Y axis). However, it is not

possible to connect more than 5 correction generators at the same time.

After a controller restart, the correction generators have to be defined once again. The

definitions and connections do not survive a controller restart.

The instructions can only be used in motion tasks.

5 Path Offset (612-1)

5.2. RAPID components

3HAC 18152-1 Revision: F48

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

5.2. RAPID components

Data types

This is a brief description of each data type in Path Offset. For more information, see the

respective data type in Technical reference manual - RAPID Instructions, Functions and Data

types.

Instructions

This is a brief description of each instruction in Path Offset. For more information, see the

respective instruction in Technical reference manual - RAPID Instructions, Functions and

Data types.

Functions

This is a brief description of each function in Path Offset. For more information, see the

respective function in Technical reference manual - RAPID Instructions, Functions and Data

types.

Data type Description

corrdescr corrdescr is a correction generator descriptor that is used as the
reference to the correction generator.

Instruction Description

CorrCon CorrCon activates path correction. Calling CorrCon will connect a
correction generator. Once this connection is made, the path can be
continuously corrected with new offset inputs (for instance from a
sensor).

CorrDiscon CorrDiscon deactivates path correction. Calling CorrDiscon will
disconnect a correction generator.

CorrClear CorrClear deactivate path correction. Calling CorrClear will
disconnect all correction generators.

CorrWrite CorrWrite sets the path correction values. Calling CorrWrite will
set the offset values to a correction generator.

Function Description

CorrRead CorrRead reads the total correction made by a correction generator.

5 Path Offset (612-1)

5.3. Related RAPID functionality

493HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

5.3. Related RAPID functionality

The argument \Corr

The optional argument\Corrcan be set for some move instructions. This will enable path

corrections while the move instruction is executed.

The following instructions have the optional argument\Corr:

• MoveL

• MoveC

• SearchL

• SearchC

• TriggL (only if the controller is equipped with the base functionality Fixed Position

Events)

• TriggC (only if the controller is equipped with the base functionality Fixed Position

Events)

• CapL (only if the controller is equipped with the option Continuous Application

Platform)

• CapC (only if the controller is equipped with the option Continuous Application

Platform)

• ArcL (only if the controller is equipped with the option RobotWare Arc)

• ArcC (only if the controller is equipped with the option RobotWare Arc)

For more information on these instructions, see respective instruction in Technical reference

manual - RAPID Instructions, Functions and Data types.

Interrupts

To create programs using Path Offset, you need to be able to handle interrupts. For more

information on interrupts, see Technical reference manual - RAPID overview.

5 Path Offset (612-1)

5.4. Code example

3HAC 18152-1 Revision: F50

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

5.4. Code example

Linear movement with correction

This is a simple example of how to program a linear path with online path correction. This is

done by having an interrupt 5 times per second, calling a trap routine which makes the offset

correction.

Program code
VAR intnum int_no1;

VAR corrdescr id;

VAR pos sens_val;

PROC PathRoutine()

!Connect to the correction generator

CorrCon id;

!Setup a 5 Hz timer interrupt.

CONNECT int_no1 WITH UpdateCorr;

ITimer\Single, 0.2, int_no1

!Position for start of contour tracking

MoveJ p10,v100,z10,tool1;

!Run MoveL with correction.

MoveL p20,v100,z10,tool1\Corr;

!Remove the correction generator.

CorrDiscon id;

!Remove the timer interrupt.

IDelete int_no1;

ENDPROC

TRAP UpdateCorr

!Call a routine that read the sensor

ReadSensor sens_val.x, sens_val.y, sens_val.z;

!Execute correction

CorrWrite id, sens_val;

!Setup interrupt again

IDelete int_no1;

CONNECT int_no1 WITH UpdateCorr;

ITimer\Single, 0.2, int_no1;

ENDTRAP

Index

513HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

A
axis 23
axis reset 23

C
Corr argument 49
CorrClear 48
CorrCon 48
corrdescr 48
CorrDiscon 48
correction generator 47
CorrRead 48
CorrWrite 48

E
Event Preset Time 20
external axis 23

F
fixed position events 17

I
IndAMove 26
IndCMove 26
IndDMove 26
Independent Axes 23
Independent Joint 25
Independent Lower Joint Bound 25
independent movement 23
Independent Upper Joint Bound 25
IndInpos 26
IndReset 26
IndRMove 26
IndSpeed 26

J
joint zones 11

M
measurement system 26
MoveCSync 19
MoveJSync 19
MoveLSync 19

P
path correction 47
path offset 47
path recorder 38
Path Recovery 29
pathrecid 30
PathRecMoveBwd 30
PathRecMoveFwd 30
PathRecStart 30
PathRecStop 30
PathRecValidBwd 30
PathRecValidFwd 30
position event 17

R
recorded path 38
recover path 29

reset 26
reset axis 23
RestoPath 30

S
safety 9
sensor 47
shapedata 12
stationary world zone 12
StorePath 30
SyncMoveResume 30
SyncMoveSuspend 30

T
temporary world zone 12
Transmission Gear High 25
Transmission Gear Low 25
TriggC 19
TriggCheckIO 19
triggdata 18
TriggEquip 18
TriggInt 18
TriggIO 18
triggios 18
triggiosdnum 18
TriggJ 19
TriggL 19
TriggLIOs 19
TriggRampAO 19
triggstrgo 18

W
world zones 11
WZBoxDef 12
WZCylDef 12
WZDisable 13
WZDOSet 13
WZEnable 13
WZFree 13
WZHomeJointDef 13
WZLimJointDef 13
WZLimSup 13
WZSphDef 12
wzstationary 12
wztemporary 12

Z
zones 11

Index

52 3HAC 18152-1 Revision: F

©
 C

op
yr

ig
ht

 2
00

4,
 2

00
6,

 2
00

9-
20

11
 A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

3H
A

C
18

15
2-

1
R

ev
 F

, e
n

Contact us

ABB AB
Discrete Automation and Motion
Robotics
S-721 68 VÄSTERÅS
SWEDEN
Telephone +46 (0) 21 344 400

www.abb.com

	Application manual - Motion functions and events
	Table of Contents
	Overview of this manual
	About this manual
	Usage
	Who should read this manual?
	Prerequisites
	Organization of chapters
	References
	Revisions

	Product documentation, M2004
	Categories for manipulator documentation
	Product manuals
	Technical reference manuals
	Application manuals
	Operating manuals

	Safety
	Safety of personnel
	Safety regulations

	1 World Zones (608-1)
	1.1. Overview
	Purpose
	What is included
	Basic approach
	Limitations

	1.2. RAPID components
	Data types
	Instructions
	Functions

	1.3. Code examples
	Create protected box
	Signal when robot is in position

	2 Fixed Position Events
	2.1. Overview
	Purpose
	What is included
	Basic approach

	2.2. RAPID components and system parameters
	Data types
	Instructions
	Functions
	System parameters

	2.3. Code examples
	Example without Fixed Position Events
	Result
	Example with TriggIO and TriggL instructions
	Result
	Example with MoveLSync instruction
	Result

	3 Independent Axes (610-1)
	3.1. Overview
	Purpose
	What is included
	Basic approach
	Reset axis
	Limitations

	3.2. System parameters
	About the system parameters
	Arm
	Transmission

	3.3. RAPID components
	Data types
	Instructions
	Functions

	3.4. Code examples
	Save cycle time
	Polish by rotating axis 6
	Reset an axis

	4 Path Recovery (611-1)
	4.1. Overview
	Purpose
	What is included
	Limitations

	4.2. RAPID components
	Data types
	Instructions
	Functions

	4.3. Store current path
	Why store the path?
	Basic approach
	Example
	Store path in a MultiMove system
	“SyncArc” example with coordinated synchronized movement
	T_ROB1 task program
	T_ROB2 task program
	T_STN1 task program

	Suspend and resume synchronized movements in the “SyncArc” example
	T_ROB1
	T_ROB2
	T_STN1

	4.4. Path recorder
	What is the path recorder
	How to use the path recorder
	Lift the tool
	Simple example
	Complex example
	Resume path recorder
	“SyncArc” example with coordinated synchronized movement
	T_ROB1 task program
	T_ROB2 task program
	T_STN1 task program

	5 Path Offset (612-1)
	5.1. Overview
	Purpose
	What is included
	Basic approach
	Limitations

	5.2. RAPID components
	Data types
	Instructions
	Functions

	5.3. Related RAPID functionality
	The argument \Corr
	Interrupts

	5.4. Code example
	Linear movement with correction
	Program code

	Index

